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Abstract 

The electron impact (El) mass spectra of 2-thienylsilanes have been studied. It 
has been found that species containing the Si=S bond take part in fragmentation, 
indicating intramolecular interaction of the silicon and sulphur atoms under EI 
conditions. The mass spectra are characterized by silicon-containing ions and also 
by intense peaks of silicon-free ions. Based on the mass spectrometric data, the 
following sequence of Si-R relative strengths in thienylsilanes is found: Si-CH, < 
Si-H < Si-(2-thienyl) < Si-Cl. 

Introduction 

In contrast to the carbon derivatives of thiophene [l], until recently mass 
spectrometric studies of thienylsilanes have been scarce [2-51. Nevertheless, the 
mass spectra of these compounds present interest because of the possibility of 
positive charge localization on the two heteroatoms: sulphur and silicon, which can 
lead to new fragmentation patterns. 

Results and discussion 

EI mass spectra were recorded for the thienylsilanes I-III. 
Quantitative characterization of the most intense and characteristic peaks in the 

mass spectra of I-III are presented in Table 1. 
The high intensity of the molecular ion of tetra(24ienyl)silane (Id) (100%) is 

determined by the molecule’s symmetry and by the possibility of charge localization 
both on the a-system of the cycle and on the silicon atom. Differences in stability of 
molecular ions (IV,, % of total ion current) for tetra(Zfuryl)silane (37.0 [6]), Id 
(20.5%) and tetraphenylsilane (17.8% [7]) are in agreement with changes in interac- 
tion of the silicon atom and the aromatic system in the order: 2-furyl > 2-thienyl > 
phenyl [ 81. 
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(Ia: R= H ; 

Ib : R = Ct-lj ; 

Ic :R=Cl ; 

Id : R = 2-thienyl 1 

(IIa: R= R’= H ; ( III a R= R’=H ; 

IIb : R = R’= CH3 ; rrr b R z R’ = CH3 ; 

IlC R = R’ zz Cl ; III c R q R’ = CI ; 

IId : R =H,R’=CH3) IIId R=H, R’ = CH3 ; 

III e R =H, R’z C1 ; 

III f R = CH3 , R’ = Cl ) 

SiRR’2 

Distortion of molecular symmetry induced by the introduction of other substitu- 
ents at the silicon atom (Ia-Ic) leads to decreased molecular ion contribution to the 
total ion current (Table 1). Variation in W, for II and III is insignificant in 
comparison with Ia-Ic. This is apparently connected with a decrease in the 
possibility of charge delocalization over several heterocycles, on the one hand, and 
with an increase in the number of decomposition pathways owing to variation in the 
Si-R bond strength, on the other hand. 

(Id) 

(B) 

* 

/ 
1a 

1 
+* 

l 

1a, 11a 
(M-B) (B) 

o_?+ 
S 

(M-0) 

* 
Id 

l 

II d 
OJ 

S 

(0) 

Scheme 1 

(Ia.IIa.IId ) 



T
ab

le
 1

 

C
h

ar
ac

te
ri

st
ic

 p
ea

k
s 

in
 m

as
s 

sp
ec

tr
a 

of
 2

-t
h

ie
n

yl
si

la
n

es
 I-

II
I 

Io
n

s 
rn

 /I
 

(r
el

at
iv

e 
ab

u
n

d
an

ce
s,

 %
) 

Ia
 

Ib
 

Ic
 a

 
Id

 
II

a 
II

b
 

II
C

 D
 

II
d

 
II

Ia
 

II
Ib

 
II

IC
 a

 
II

Id
 

II
Ie

 =
 

II
If

 a
 

M
C

’ 
21

8 
29

2 
31

2 

IM
-R

]+
 

B
+

- 

[M
-B

]+
’ 

c+
 

21
6 

17
9 

14
3 

13
4 97
 

85
 

51
 

(8
8)

 
(6

1 
(4

7)
 

19
5 

20
9 

22
9 

(2
5)

 
(7

) 
(1

2)
 

27
7 

27
7 

27
7 

(1
9)

 
(1

O
Q

 
(6

) 

19
4 

- 
- 

(l
O

@
 

11
2 (5
) 

84
 

- 
16

6 

(1
1)

 
W

-J
) 

16
6 (5
) 

11
1 

11
1 

63
 

(3
8)

 
(1

8)
 

(2
2)

 
(7

) 
(2

5)
 

(1
8)

 
(1

0)
 

(6
5)

 
(5

) 
(1

2)
 

(2
7)

 
(6

) 
(1

7)
 

(4
5)

 
(9

) 
(9

) 
(2

8)
 

36
0 

(1
W

 

27
7 

(2
8)

 

19
4 

(2
0)

 

16
6 

(1
0)

 

11
1 

(2
5)

 
(1

8)
 

(5
9)

 
(3

0)
 

(3
5)

 

19
6 

22
4 

W
J)

 
(3

5)
 

11
3 

14
1 

(1
31

 
(7

) 
19

5 
20

9 

(5
6)

 
(1

00
) 

11
2 

- 

(5
5)

 

84
 

- 

(1
7)

 

11
1 

11
1 

(4
4)

 
(7

) 

(7
) 

(1
4)

 
(5

) 
(2

5)
 

(4
2)

 
(8

) 

26
4 

21
0 

11
4 

(3
9)

 

18
2 

(1
2)

 
22

9 

(1
0)

 

- 

16
6 

(1
00

) 

(8
) 

(6
) 

(5
) 

(5
3)

 

12
7 (9

) 
20

9 

(1
4)

 
19

.5
 

(I
O

Q
 

12
6 

(2
7)

 

- 

11
1 

W
I 

(1
0)

 
(1

7)
 

W
Q

 

11
3 

(7
2)

 

11
2 

(1
8)

 

84
 

11
8 

- 
(7

) 
(9

) 

11
1 (5
) 

15
6 

21
6 

14
2 

(2
3)

 
(9

6)
 

(2
5)

 

73
 

18
1 

(6
) 

(9
1)

 
14

1 
13

3 
18

1 

(1
W

 
(2

3)
 

(1
1)

 
12

7 

(1
00

) 
98

 
58

 

(6
) 

(1
1)

 

63
 

11
1 

63
 

(2
5)

 
(5

) 
(2

7)
 

(5
) 

(7
) 

18
2 

(2
3)

 

99
 

(4
) 

18
1 

(1
8)

 
14

7 (7
) - (9
) 

(7
) 

19
6 

(5
8)

 

11
3 

(1
7)

 
18

1 

(1
00

) 
16

1 

(2
3)

 

98
 

(7
) 

63
 

(4
3)

 

(1
0)

 

(1
1)

 

w
hl

 c
@

 
13

.6
 

16
.2

 
13

.2
 

20
.4

 
13

.3
 

14
.2

 
14

.1
 

13
.2

 
15

.4
 

11
.9

 
14

.6
 

9.
7 

8.
0 

9.
5 

n 3
sc

1 
p

ea
k

s.
 



172 

Table 2 

Estimation of the relative Si-R bond strength in 2-thienylsilanes 

Compound I&J=,+, (%) Relative bond strength 

R = (2-thienyl) R=H R=CH, R = Cl 

Ia 51 

Ib 7 

IC 66 

Id 100 

IIa 19 

IIb 7 

IIC 55 

IId 7 

43 

81 

12 

93 

93 

81 

34 

45 

Si-CH, < Si-H c Si-Cl 

Si-H < Si-(2-thienyl) 

Si-CH, < Si-(2-thienyl) 

Si-(2-thienyl) < Si-Cl 

Si-CH, i Si-H 

The abundance of silacenium ions A+ (Table 1) originating from bond rupture 
between the substituent and the silicon atom is proportional to bond strength. The 
contribution of each A’;, ion type (Table 2) versus the sum of intensities of all A;?, 
ions permits one to estimate the relative strength of the Si-R bond in the molecular 
ions of thienylsilanes: Si-CH, < Si-H < Si-(2-thienyl) < Si-Cl. 

The sequence obtained is in accordance with the variation in bond dissociation 
energies in trimethylsilanes [9]. The fragmentation of 2-thienylsilanes occurs with 
elimination of dithienyl (Ia, Id) or thiophene (Ia, IIa, Ild) from the rearranged 
molecular ion, resulting from migration of one of the thienyl groups or of a 
hydrogen atom to the other thienyl ring. Pseudomolecular silicon(H)-containing ions 
B+‘are formed as a result of this elimination (Table 1, Scheme 1). A similar loss of 
diphenyl is observed upon fragmentation of tetraphenylsilane [lo]. In addition, 
I-III undergo decomposition, the charge being retained by the silicon-free moiety of 
the molecule leading to the [M - B] +’ ions. The increased intensity of [M - B] i-o ion 
peaks in comparison with the phenylsilanes (10 and 5% for dithienyl and diphenyl 
ions in Id and in tetraphenylsilane [II], correspondingly) can be explained by the 
participation of the sulphur atom in charge localization. 

The ion C ‘, analogue of the ion Ai for silicon(I1) (Table 1, Scheme 2) is 
produced by the loss of dithienyl, thiophene, methylthiophene or chlorothiophene 
from ion A+. Possibly, the formation of the ion Ct also involves rearrangement. 

(A) 

Scheme 2( R = H , Cl-l? , Cl , 2-thienyl ) 

The peaks of [M - B]+’ ions are more intense than those of B+’ only for 
chlorothienylsilanes Ic, IIc and IIIe (Table 1, Scheme 3) and are the base peaks in 
their mass spectra. A preferable charge localization on the silicon-free fragment 
[M - B]+’ is determined both by the high ionization potential of dichlorosilylene 
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(11.9 eV versus 8.9 eV for thiophene [12]) and by the Si-R bond strength (Table 2), 
because the migration of the substituent R to the thienyl ring leads to [M - 31’: 
Thus, 111~ forms both the (M - B)+‘ and Bf’ ions of low abundance, whereas IIIf 
forms only (M - B)+‘of similar intensity (Table 1). 

It should be noted that intramolecular interaction of both heteroatoms in 
thienylsilanes (sulphur and silicon) is manifested under EI conditions. The frag- 
mentation is characterized by elimination of the neutral species Si=S (Scheme 4) and 
by appearance of the silanethione ions [RSi=S]+ (Scheme 5). To date, there is no 
clear-cut evidence as to the existence of stable compounds having the Si=S double 
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bond [13]. Mass spectrometric data indicating the participation of neutral and 
charged species of silanethiones (H,Si=S [14], [MezSi=S]+; [MeSi=S]+, [Et,Si=S]“‘+: 
[EtSi=S] ’ [15]) in fragmentation have been discussed in terms of a possible n,-3d,, 
transannular interaction in compounds initially lacking the Si-S bond. A similar 
interaction is impossible in the molecules of thienylsilanes. The migration of thienyl 
groups in molecular or fragment ions with subsequent expansion of the thiophene 
cycle by a silicon atom may possibly cause this specific fragmentation. Apparently, 
migration of the thienyl group in molecular and fragment ions (except for the 
silicon-free ions shown in Scheme 4) is responsible also for the formation of ions 
WI/Z 179 and 97, whose elemental compositions are C,H,S, and C,H,S, respec- 
tively. 

/ \ CQ *c--l- / \ & -C2H2S f 
$+ 

___3 CHSC-Si=S 

S * 5 * 

(A) m/z 143 m/z a5 

Scheme 5 

Experimental 

Mass spectra of I-III were obtained with a MS-25 gas chromatograph/mass 
spectrometer operated at 70 eV. The source temperature was 200 o C. A glass 
column packed with OV-101 was used, carrier gas-helium. The precise ion masses 
with m/z 216, 179, 166, 143 and 134 (resolution 40000) and metastable transitions 
were determined on a MS-50 apparatus. Compounds I-III were synthesized accord- 
ing to [8,16]. 
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